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SUMMARY

Bounds for the tails of Dirichlet integrals are established by

showing that each integral as a function of the limits is a Schur

sanction. In particular, it is shown how these bonnds apply to the

-simultaneous analysis of variance test and to the multinomial distri-

bution.
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MONOTONICITY PROPERTIES OF DIRICHLET INTEGRALS WITH APPLICATIONS
,

TO THE MULTINOMIAL DISTRIBUTION AND THE ANOVA TEST 1

Ingram Olkin
Stanford University and Educational Testing Service

1. Introduction. The present paper is concerned with establishing

bounds for the Dirichlet integrals:
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where a = (a ... a
k
), and d is such that the integrals exist.

The main result is that under certain conditions, -L1(a), -L2(a),

and -U(a) are Schur functions in (al,...,ak), (see e.g., Berge (1963)

or Marshall, Olkin and Pros than (19 67)) . As a consequence of this fact

it follows that if

1'Work supported in part by Educational Testing Service and by

National Science Foundation Grant GP-32326X at Stanford University.
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in the sense that, after possible reordering, with a > a ,
1 k

b
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L1(a) < L (b) (a) < L2(b) U(a) < U(b)

(1.4)
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In this way we can generate many inequalities. Both the multinomial

distiibution and the simultaneous analysis of variance test are related

to L
2
(a) and U(a), respectively, and we provide several new results

as a consequence of (1.4).

2. The main results4' We next prove the main results concerning

L1(a),(a) L
2
(a) and U(a). Theorem 1 is stated more generally and

encompasses both L1(a) and L2(a).

To show that a function F(a) = F(a ,.. a
1 k

we must show that

?a. .

(a.-a
j
) > 0

for all i and j.

is a Schur function,

(2.1)



Theorem 1. If f(x) is a non-negative monotone decreasing function,

L(a;w) =
J :

k w.-1
jr f(Et) Rt.' dt.

212

where a
1
> > a

k
0,> 0 0 < w

1
< < wk, then -L(a;w) is a

Schur function in (al,...,ak), whenever the integral is finite.

Proof. Because of symmetry, we need only consider (i,j)= (1,2) in

showing that (2.1) holds for -L(a;w). It is immediate from (2.2)

noting the condition on f(x) - that
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Condition (2.1) for - L(a;w) will be satisfied if

(2.2)

(2.3)

1 1 w wl -12-1
-1 ffo ...pa

1
f(a

1
+a
2
z+Za

i
y )z - a

2
fka

1
z+a

2
+Zs.

i
y )z ] (2.4)

0 3 3

k
dz Ti dyi <0

3

A sufficient condition for (2.4) to hold is that, pointwise,

w,
<

-1 1.11-1

a
2
f(a

1
+a

2
i+q)z.' a

1
f(a

1
z+a

2
+q)z I

3

(2.5)



For 0 < z < 1, (a1+a2z+Q) > (a1z+a2+Q), so that
f(a1 +a2z+Q) <

f(alz+a2+Q). Since 0 < wi < w2, z
wl

< z , and (2.4) holds. II

The result for U(a) is more delicate and a pointwise argument

does not carry through.

Theorem 2. If al > ... a
k

0, 0 < w
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< w
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, and
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where d > Zw., then -U (a;w) is a Schur function.

Proof. Because of symmetry, we need only consider (i j) = (1,2) in

showing that (2.1) holds for -U(a;w). It is immediate that
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k

We now use a pointwise argument on the inner integral with Et.

13
fixed. Let z = (1+a +a,+Et.)v = sv then the inner integral becomes
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The ordering 0 < w
1

< w
2

guarantees that the integrand be non-

negative, so that (2.10) holds.h

(2.9)

(2.10)

3. An application to the multinomial distribution. Let X =
k

)

have the multinomial distribution

P(X=x) =

k
n ),11 6.i

'""xk 1

where x = (xl,...,xk), Ex. =n, 0
1
> > 0k > 0, Eel =1, and

consider the tail probability P(X
1 '

> r ...,X
k '

> r(0 .

k '
) with

r < n/k.

Alam (1970) obtains lower and upper bounds for P(X1 > r,...,Xk > ri

(91,...,ek) by averaging some of the 0's, namely
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P X >r,...,Xk>rkix.lek,...,0k) < P X >r,...,Xk>riel,...,ek

<p

where, e* = 1-(k-1)0k 1
and I = ze./k. It has been shown by Olkin and

Sobel (1965) that. P(X1 > r,...,X
k

> rle11.'" k
) has a representation

in terms of the Dirichlet integral
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where d=n-kr. > 0 and IC (n,r,k) = r(n+1)/t( r (r))k r (n-kr+1) 3. We may

now make use of Theorem 1 with w1
= =w

k
=r. Thus, if 0 < pi < 1,

0 < qi < 1 and (p1,...,pk) (q1, ...)qk), then

P X >r ... X >rip
1 k '''

< P(Xl >r,...,Xk>r

The results of Alam are special cases of (3.4 ) since

(e*,ek,...,ek e ...,ek) (5,..,e)

""'clk) (3.4)

Clearly, many other intermediate bounds can now be obtained.

For the lower tail of the multinomial distribution (3.1), we

have the representation
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where m < min(k -1,n) and d = n -kr > 0. As in Theorem 1, a direct

differentiation of (3.5) with respect tc el, followed by the change of

variables t -e2=v, t.-e. =z.
,

j=3,,m, yields
J J J

m-i
e -v e -v- z z.
o o m m m

.(11?aei f ' 3 J J 0
;r) f f ... .te v+e, )11(z.fe. jr_1(e -v-zz. d dr II dz . ,

0 0 0 3 3

where

ac(e;r)
s)e2

= By symmetry,
1 1

m-1

o-v o-v- z z.
... f

3
( e

o

v+e )il(z +o.))j
3

m

-v-zz.)u mj dvn dz.
3

That -C:(e;r) is a Schur function follows from the fact that

(e1-e2)((eiv+eie2)r -1 - (e2v+eie2)1.-1) > 0 for all v.

As a consequence, we have the

Corollary. If (p1,.,pk) - (q1, then

?P(Xi<r,...,Xm<riPi,,pk)
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4. An application to the simultaneous analysis of variance model. Suppose

two hypotheses are tested using the same error variance for each test, so

that we have

q q in
1
in

1 F
2 1

1 go/no
= , =

71.OT-1;

where
X variates

go, ql, and q2 are independently distributed as

with n
o'

n1, and n
2

d.f. respectively. Kimball (1951) obtained the

inequality

P F < F
1 la'

<.F ) > P(F1 <
2a

P(F
2
< F

2a

where Fla and F are the 100 a percent points of the distributions
2a

of F
1

and F
2.

This inequality is of interest in that it provides a

bound for the probability of making no errors of the first kind. We

may use Theorem 2 to obtain a bound for P(F1 > Fla, F2 > Faa).

Suppose that n
1
=n
2
=n then

P(Fi > Fa, > Fa = k

= 5n-1 271-1
x- v dx dy

2 0

where c = nFain
0

and k is a normalizing constant. Since (2c,0)

we obtain from Theorem 2 that

P(F). > Fa, F2 > Fa) > P(F1 > 2Fa,

8 10

>0) = P(F
1
> 2Fa ) .

(4.2)

(4.3)



Since

P(F <F <F F +P(F <F ) +P(F >F -F >1; ) -1 , (4.4)
-1 la' 2 2:c la 1

we obtain an alternetive inequality to that of (4.1), namely,

P(F1 <Fa , < a)
F ) > 2P(F

1
< F ) - P(F

1
< 2Fa

This is to be compared with

P(F, < Fa, F2 < Flu) > (P(F1 < F

We wish the larger bound, zo that we need to determine the sign of

[P(F1<Fa 2- 2P(F <F )+1-P(F 2F ).[P(F >F1 a 1> 1 a

(4.5)

(4.6)

F1> Fa ) .

It turns out that the difference is not always of one sign. When n=2,

[P(F > c )]
2

=

-n0

+-CI\ v < 11
n

2 = P(F > 2c
n /
0 0

so that (4.5) yields a better bound than (4,6) . With n0 .4 *3, the

difference becomes

rPrX2 > A 2c) .
L L n

9

11.

(4.7)

(4.8)



m-1

When n=2m, P(X2 > c) = c'h!, and a straightforward analysis
n 0

shows that (4.8) is nonnegative.

For small values of c (less than c0(n,110)), [P(F > c))2 is

larger than P(F > 2c), whereas for c > c0(n,n0), P(F > 2c) is

larger than [P(F > c)]
2
, where c

0
(n,n

0
) depends on n and n

0.

As either n or n0 increase, the constant c0(n,n0) tends to

increase. Since c will, in general, be of moderate size, it appears

that (4.5) is the better bound in practise.
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